Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 29(12): 381, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985487

RESUMO

CONTEXT: The catalytic ability of Sc-doped C46 and Sc-doped Al23P23 as catalysts of CO2-RR to create the CH4 and CH3OH is investigated. The mechanisms of CO2-RR are examined by theoretical methods and ΔGreaction of reaction steps of CO2-RR mechanisms are calculated. The overpotential of CH4 and CH3OH production on Sc-doped C46 and Sc-doped Al23P23 is calculated. The Sc atoms of Sc-doped C46 and Sc-doped Al23P23 can adsorb the CO2 molecule as the first step of CO2-RR. The CH4 is produced from hydrogenation of *CH3O and the *CO → *CHO reaction step is the rate limiting step for CH4 production. The CH3OH can be formed on Sc-doped C46 and Sc-doped Al23P23 by *CO → *CHO → *CH2O → *CH3O → CH3OH mechanism and HCOOH → *CHO → *CH2O → *CH3O → CH3OH mechanism. The Sc-C46 and Sc-Al23P23 can catalyze the CO2-RR to produce the CH4 and CH3OH by acceptable mechanisms. METHODS: Here, the structures are optimized by PW91PW91/6-311+G (2d, 2p) and M06-2X/cc-pVQZ methods in GAMESS software. The frequencies of nanocages and their complexes with species of CO2-RR are investigated by mentioned methods. The transition state of each reaction step of CO2-RR is searched by Berny method to find the CO2-RR intermediates. The ∆Eadsorption of intermediates of CO2-RR on surfaces of nanocages is calculated and the ∆Greaction of reaction steps of CO2-RR is calculated.

2.
J Mol Graph Model ; 117: 108302, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36049401

RESUMO

In this project, we have investigated the possibility of mimicking the natural photosynthesis, as well as sensing and adsorption application of aluminum decorated graphitic C3N4 (Al-g-C3N4) QDs (toward some air pollutants containing CO, CO2, and SO2). The results of the potential energy surface (PES) studies show that in all three adsorption processes, the energy changes are negative (-10.70 kcal mol-1, -16.81 kcal mol-1, and -79.97 kcal mol-1 for CO, CO2, and SO2 gasses, respectively). Thus, all of the adsorption processes (mainly SO2) are spontaneous. Moreover, the frontier molecular orbital (FMO) investigations indicate that the Al-g-C3N4 QD could be used as a suitable semiconductor sensor for detection of CO, and CO2 (as carbon oxides) in one hand, and SO2 gaseous species on the other hand. Finally, the results reveal that those QDs could be applied for artificial photosynthesis (in presence of CO2; Δµh-e = 1.43 V), and for water splitting process for the H2 generation (Δµh-e = 1.23 V) as a clean fuel for near future.


Assuntos
Poluentes Atmosféricos , Poluição do Ar/prevenção & controle , Alumínio/química , Grafite , Fotossíntese , Adsorção , Carbono , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Catálise , Nitrogênio , Óxidos , Dióxido de Enxofre/química , Dióxido de Enxofre/metabolismo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...